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ABSTRACT 

The development of very  high s t rength and stiffness fi laments has  

motivated considerable in te res t  in the s t rength  of f iber  reinforced compos- 

i tes .  

f iber  and ma t r ix  charac te r i s t ics  upon the mechanics  of deformation and 

f r ac tu re  of fibrous composites.  

m a t r i x  reinforced by uniaxially oriented f ibe r s .  

t e r i a l  is t rea ted  f o r  the cases  where the fa i lure  c r i t e r i a  a r e  maximum tensile 

of compress ive  load c a r r i e d  by the composite in a direction para l le l  to the 

f iber  orientation. 

veloped. Comparison is made with available experimental  data. The tensi le  

fa i lure  model is a s ta t is t ical  one. 

gate the validity of th i s  model is described. 

tempt  

The purpose of the present  paper is to  descr ibe  studies of the effect of 

These studies consider the response of a 

The strength of such a ma-  

Analytical models fo r  fa i lure  in these two modes a r e  de- 

A new experimental  technique to investi-  

All of the studies included a t -  

to re la te  composite performance to constituent propert ies .  

:: This  r e s e a r c h  was supported by the National Aeronautics and Space 
Administration under contract  NASw-817. 
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SUMMARY 

The existence of many very high strength and  stiffness fi laments has  

motivated considerable interest  in the selection of appropriate  ma t r ix  ma- 

t e r i a l s  to  obtain fibrous composites which can utilize these  outstanding prop- 

e r t i e s .  

fluence of both fiber and ma t r ix  character is t ics  upon the mechanics of 

deformation and f r ac tu re  of fibrous composites.  

information needed to se lec t  appropriate constituents for  given applications. 

These  studies consider the response of a ma t r ix  re inforced by uniaxially 

or iented f ibers .  The strength of such a ma te r i a l  is t rea ted  for  the cases  

where the fai lure  c r i t e r i a  a r e  maximum tensile and compressive loads c a r -  

r ied  by the composite in a direction paral le l  to the f iber  orientation. 

It is the purpose of the present  paper to  descr ibe  studies of the in- 

The a i m  is to obtain the 

When the response of a composite i s  to be measu red  in t e r m s  of 

average  s t r e s s  and average  s t ra in ,  the ma te r i a l  can be represented  by an  

effective homogeneous but anisotropic ma te r i a l  having the same  average r e -  

sponse.  

effective ma te r i a l  is t ransverse ly  isotropic and i s  therefore  character ized 

by five elast ic  constants. 

these  constants as  functions of the constituent proper t ies  have been made and 

the relationship between constituent propert ies  and elast ic  moduli i s  reason-  

ably well  understood. 

F o r  the case  of a ma t r ix  containing uniaxially oriented f ibers ,  the 

Various analytical  approaches to  the evaluation of 

However, when a f r ac tu re  cr i ter ion is desired,  a n  understanding of the 

average  s t r e s s - s t r a i n  response is no longer sufficient, and consideration 

m u s t  be given to internal  i r regular i t ies  in the s ta te  of s t r e s s .  

paper  t r e a t s  these problems for  both ultimate compress ive  and tensile 

s t rengths .  

The present  

The fai lure  of a fibrous composite under a uniaxial compressive load 

is considered f i r s t .  A possible failure mechanism for  this  case  i s  the hy- 

pothesis  that the individual f ibers  buckle in a shor t  wave length pattern in a 

fashion analogous to  the buckling of a column o r  plate on a n  e last ic  foundation. 

An approximate evaluation of the influence of f iber  geometry and f iber  and 

m a t r i x  moduli upon the composite compressive strength can then be made. 
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These  resu l t s  a r e  compared to the resu l t s  of a n  experimental  p rog ram which 

utilized hollow and solid g lass  f ibe r s  in seve ra l  ma t r ix  mater ia l s .  

specimens were shor t  columns designed to achieve a compress ive  s t rength 

failure.  

The t e s t  

The major portion of the present  paper is devoted to a study of the 

mechanics of tensile fa i lure  of a fibrous composite. 

consideration of the phenomena which occur  subsequent to an  initial in te rna l  

f r ac tu re .  

a s ta t is t ical  distribution function. 

cu r  in a f iber .  

An approximate solution indicates the nature  of the interface s t r e s s  d i s t r i -  

bution as  well a s  s t r e s s  concentrations in nearby f ibers .  This s t r e s s  field 

could resul t  in adjacent f iber  f rac ture ,  that is  a c r a c k  propagation effect; o r  

in separation along the interface.  

the vicinity of an init ial  f iber f rac ture  do not produce fur ther  f rac ture  and 

that increasing load produces a distribution of f ibe r  f r a c t u r e s  corresponding 

to the initial distribution of weak points in  the f ibers .  

lation of these f rac tures  would produce a weak cross-sec t ion  at which the 

rcmaining unbroken f ibers  could no longer t r ansmi t  the applied load. 

taneous tensile failure would then occur .  

The study is based upon 

The strength of the br i t t le  f ibers  a r e  considered to be defined by 

Thus,  the initial f r ac tu re  is likely to O C -  

The result ing perturbation of the local s t r e s s  field i s  t reated.  

A third possibility is  that the s t r e s s e s  in 

The continued accumu- 

Instan- 

A statist ical  tensi le  failure model of a f ibrous composite is establ ished 

on this basis .  T h c  mechanical charac te r i s t ics  of f iber  and ma t r ix  a r e  utilized 

to obtain a statist ical  failure definition. An experimental  p rog ram to investi-  

gate the validity of the model i s  descr ibed.  The specimens a r e  thin g l a s s -  

reinforccd epoxy specimens which a r e  observed photoelastically during the 

loading process .  An attempt is  made to co r re l a t e  the tensi le  proper t ies  of 

constituents and composites.  

All of the studies included attempt to re la te  composite performance to 

constituent propcrt ics .  In gc.ncbral, the consti tuents have been t rea ted  a s  

homogeneous isotropic i i ia t t r ia ls .  

t reated in the comparison \vith t.xpc.rimenta1 data. 

The implications of the assumptions a r e  
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TENSILE STRENGTH 

The tensi le  fa i lure  of a uniaxially stiffened matrix has  been studied 

previously by severa l  investigators.  The ear ly  findings a r e  summar ized  in  

Ref. 1 .  The s implest  fa i lure  model t rea ted  a s s u m e s  that a uniform s t r a in  

exis ts  throughout the composite and that f rac ture  occurs  at the fai lure  s t ra in  

of the f ibe r s  alone (e. g. Ref. 2 ) .  The effect of a non-uniform s t ra in  d i s t r i -  

bution was studied in Ref. 3 which suggests the influence of f iber  flaws on 

composite fa i lure .  In Ref. 3 ,  failure occur s  when the accumulation of f iber  

f r ac tu res  result ing f r o m  increasing load shortens the f iber  lengths to the 

point that  fur ther  i nc reases  in load could not be t ransmit ted to the f ibers  be-  

cause the maximum mat r ix  shea r  s t r e s s  was exceeded. Thus,  composite 

fa i lure  resul ted f rom a shear  failure of the mat r ix .  The re  continues to be  

substantial disagreement a s  to the actual mechanics  of fa i lure  within such a 

composite. 

The model t rea ted  in the present analysis  ( see  Ref. 4) is shown in  

F igure  1,  and consis ts  of a set  of paral le l  f ibers  which a r e  a s sumed  to be 

s t rong and stiff with respect  to the ma t r ix  ma te r i a l  in  which they a r e  im- 

bedded. The f ibe r s  t rea ted  a r e  high s t rength br i t t le  f ibers  whose s t rength 

is  dependent upon the degree of surface imperfection. When such a composite 

is subjected to a tensile load a fiber f r ac tu re  will occur  a t  one of the ser ious  

flaws o r  imperfections.  When such a f iber  breaks ,  the s t r e s s  in the vicinity 

of the broken f iber  i s  perturbed substantially so that the axial  s t r e s s  in the 

f iber  vanishes a t  the f iber  break  and gradually builds back up to its undis- 

turbed s t r e s s  value due to shear  s t r e s s e s  being t r ans fe r r ed  a c r o s s  the f iber  

m a t r i x  interface.  The general  form of the local s t r e s s  pat tern in  the f iber  is 

shown i n  the figure.  When such a break occurs ,  s eve ra l  possibil i t ies for  the 

future behavior of the Composite exist. F i r s t ,  the high interface shear  

s t r e s s e s  could produce interface failure which could propagate along the 

length of the fiber reducing the fiber effectiveness over a substantia! f iber  

length. In o rde r  to achieve the potential of the f iber  s t rength it i s  necessa ry  

to  study and determine the fabrication conditions which will yield an  interface 

sufficiently strong to \\ithstand this interface shear  fa i lure .  This can be done 

e i ther  through the use of a high strength bond o r  a ductile ma t r ix  Lvhich 
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permi t s  redistribution of the shear  s t r e s s e s .  In the latter case  the length of 

f iber  which is affected by the b reak  will increase  as  it will take a longer 

distance to re t ransmit  the s t r e s s e s  back into the f iber  at  the low s t r e s s  

level of a ductile matrix.  With a strong bond, the interface conditions can be 

overcome as  a potential source of fa i lure ,  and a second possibility is that 

the init ial  crack will propagate a c r o s s  the composite result ing in  fa i lure .  

This is influenced by the f r ac tu re  toughness of the m a t r i x  and again since it 

is c l ea r  that with brittle f ibers  one can always expect a f rac ture  to occur  at 

a relatively low s t r e s s  level, i t  is important that the f r ac tu re  toughness of 

the ma t r ix  mater ia l  be sufficient to prevent the propagation of th i s  c r ack  

a c r o s s  the composite. If these two potential modes of fa i lure  a r e  a r r e s t e d  

i t  will then be possible to continue to increase  the applied tensi le  load and to 

obtain b reaks  at  other points of imperfection along the f ibe r s .  Increasing the 

load wi l l  produce a s ta t is t ical  accumulation of fiber f r a c t u r e s  until a sufficient 

number of ineffective fiber lengths in the vicinity of one c ross -sec t ion  in te r -  

a c t  to provide a weak surface.  At the point of incipient f r ac tu re  a l l  of the 

failure modes described may very well interact  to produce the final f rac ture .  

This statist ical  model of fa i lure  has  been discussed in  some detail  in 

the previous work (Ref. 4). This portion of the present  study is concerned 

with an  extension of certain aspec ts  of this problem to clar i fy  the relation- 

ship between predicted resu l t s  and experimental  data,  and to emphasize the 

potential fo r  application of this  analysis .  A brief review of the method will 

be presented f i rs t .  

The model which i s  used to evaluate the influence of constituent prop- 

e r t i e s  upon thct tensile strength considers  that  in  the vicinity of a n  individual 

break  a portion of tach fiber m a y  be considered ineffective. The composite 

may then be considcred to  be composed of l aye r s  of dimension equal to the 

ineffective length. Any fiber \vhich f r ac tu res  within this  layer  wi l l  be unable 

to t ransmi t  a load a c r o s s  the laycr .  The applied load at  that c r o s s  section 

would then be uniformly distributed among the unbroken f ibers  in each 

l aye r .  The effcct of s t r e s s  concentrations n,hich w.ould introduce a non- 

uniform redistribution of thcse loads i s  not considered initially. A segment 

of a f iber  within on(. of thc,sc> layc.rs may be considered a s  a link in the chain 
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which constitutes an  individual fiber. Each layer  of the composite is  then a 

bundle of such links and the composite itself a s e r i e s  of such bundles. T rea t -  

ment of a f iber  as  a chain of links is appropriate  to the hypothesis that  f r a c -  

t u re  is  due to local imperfections.  The links may be considered to have a 

s ta t is t ical  strength distribution which is equivalent to  the s ta t is t ical  flaw d is -  

tribution along the f ibe r s .  The rea l i sm of such a model is demonstrated by 

the length dependence of f iber  strength. That is, longer chains have a high 

probability of having a weaker link than shor te r  chains,  and this  is supported 

by experimental  data for  br i t t le  f ibers which demonstrate  that mean f iber  

strength i s  a monotonically decreasing function of f iber  length. F o r  th i s  

model it is f i r s t  necessa ry  to define a link dimension by consideration of 

the perturbed s t r e s s  field in the vicinity of a broken f iber .  It i s  then neces-  

s a r y  to define the s ta t is t ical  strength distribution of the individual l inks 

which can be obtained indirectly f r o m  the experimental  data f o r  the f iber-  

strength-length relationship. These r e su l t s  can then be used in the s ta t i s t ica l  

study of a s e r i e s  of bundles and utilized to define the distribution for the 

s t rength of the fibrous composite. (Statist ical  techniques for  a s e r i e s  of 

bundles have been studied in Ref. 5 fo r  application to par t ic le  reinforced 

composites.  ) The fibrous composite has  been t r ea t ed  in  Ref. 4 and portions 

of the following analysis  a r e  reproduced h e r e  f r o m  that reference for  com- 

pleteness.  

Statist ical  Analysis of the Model 

The model, a s  descr ibed in the previous section, consis ts  of a chain 

of bundles of f iber  links. The links have a length, 6 ,  which is  to be de t e r -  

mined subsequently, and a r e  character ized by a distribution function f (o)  and 

the associated cumulative distribution function F(a) ,  where: 

U 

F(a)  = f ( o )  d o  
0 

and u is the f iber  s t r e s s .  The experimental  method for  defining the dis t r ibu-  

t ion function will be described subsequently. With th i s  distribution known, 

the distribution function for  bundle strength can be obtained and then the com- 

posite will be t rea ted  a s  a chain of bundles, and weakest link s ta t i s t ica l  
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t heo rems  will be applied. This  leads to the des i r ed  s ta t is t ical  definition of 

I composite strength. 

F o r  a bundle of links, Daniels (Ref. 6 )  has  shown that f o r  a large 

number ,  N, of f ibers  the distribution of the average  f iber  s t r e s s  at  bundle 

fa i lure ,  CT approaches a no rma l  distribution n i th  expectation: B' 

and s tandard deviation: 

The associated density distribution function i s  thus:  

The maximum f iber  s t r e s s ,  0 is  evaluatcd by masiniizing thc total 
I m' 

load, which may be expressed  a s  the product of the f iber  strcass and thc. nun]- 

b e r  of unbroken f ibers .  Hence: 

- 0  (5) 

With the bundles charac te r ized  by cq .  (4 )  and the ;lssociatc.cl C I I I I I U -  

lative distribution function, 51 (qB), given by: 

The bundlcs may be t rea ted  a s  links i n  a chain a n d  \\lc,akcLst l i n k  theorcms 

can be applied to define composite fa i lure .  For c~l (~Inents  forining <I chain 
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the distribution function, X (5 ), fo r  the average  f iber  s t r e s s  at composite 

fa i lure ,  a is defined by: 
C 

C '  

That  is, X (0 ) d a  is obtained by multiplying the probability that one bundle 

fails between 5 and a t da 

that all remaining (m-1)  e lements  exceed 0 

to [1  - n(0 ) 1 m - l )  and  considering that fa i lure  can occur  in  any of the m 

bundles. This approach will be applied to g lass  re inforced plastic composi tes  

below. 

c c  
(which i s  equal to W(oC)doc), by the probability 

C C C 

t do in  s t rength (which i s  equal 
C C 

C 

Definition of Model P a r a m e t e r s  

F o r  the s ta t is t ical  model,  the link dimension and the link strength 

distribution function a r e  required.  The f o r m e r  is defined by a shea r  lag type 

approximate analysis  of the s t r e s s  distribution in the vicinity of a broken end. 

The model  is shown in F igure  2.  Details of the analysis  a r e  prcsentcd in 

Appendix A. This  yields the following resul t  f o r  the ineffective length, 6 ,  

normalized with r e spec t  to the fiber d iameter :  

where 

Vf = f iber  volume fraction 

Ef = f iber  Young's modulus 

Gb = binder shea r  modulus 

q = f ract ion of the undisturbed s t r e s s  value bcblow which f iber  i s  
considered to  be ineffective. 

F igure  3 shows the variation of f iber  ineffective length with constitu- 

ent moduli for  var ious f iber  concentrations. These  ineffective lengths a r e  

relatively smal l ;  however, they a re  based upon a n  elast ic  analysis which 
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yields s t r e s s e s  as  shown in Figure 4. It i s  c l ea r  that for  many composites 

the ma t r ix  shear s t r e s s e s  will exceed the elast ic  l imit  of the mater ia l .  The 

point a t  which the elast ic  l imit  i s  reached is indicated on each curve of 

Figure 4 for  a ma t r ix  shea r  yield s t r e s s  of one tenth the f iber  s t rength.  

Since fo r  high concentrations most  of the curves  a r e  above the elast ic  l imit ,  

even f o r  this comparatively high strength binder,  fur ther  inelastic analysis  

i s  required.  As a f i r s t  approximation to the inelastic problem a n  approxi- 

mate  elastic-plastic analysis  has  been per formed to a s s e s s  the effect of in- 

elasticity on ineffective length. This combination of l inear  elasticity to a 

given yield s t r e s s  and then constant s t r e s s  fo r  a l l  l a r g e r  s t r a ins  i s  a g ross  

idealization of the binder s t r e s s  s t r a in  curve,  but it does enable an  est imate  

of the nature of inelastic effects. The result ing effects a r e  shown in Figure 5 

where the elastic and elast ic-plast ic  r e su l t s  fo r  otherwise identical com- 

posites a r e  compared, f o r  a m a t r i x  yield s t r e s s  of 5% of the f iber  tensile 

strength.  The increase  in ineffective length is apparent  and, a s  will be 

shown , detrimental. 

With the ineffective length and, synonomously, the fiber link length 

defined, the statist ical  s t rength distribution of the links can be deduced f r o m  

f iber  t e s t  data.  This p rocess  is  detailed in Appendix B. The resu l t  i s  that i f  

the fiber strength distribution, g(o) ,  and the assoc ia ted  cumulative dis t r ibu-  

tion function, G(o) ,  a r e  known for  f ibe r s  of length, L, then the des i red  d is -  

tribution function, f(a), for  the links of length, 6 , i s  given by: 

where L = n6 

Thus,  if f o r  i l lustrative purposes ,  one t r e a t s  f i be r s  charac te r ized  

by a Weibull (Ref. 7 )  distribution function: 

(10) P exp ( - L a a  ) 0 - 1  g ( a )  = LaPo 
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where a and @ a r e  the two parameters  character iz ing the distribution, it is 

found that: 

Substitution of eqs.  (8) and (11) into the resu l t s  of the previous sec -  

tion defines the composite strength distribution function, X (0 ). In par t icu lar  

the s ta t is t ical  mode, 0 i s  found by setting: 
J, t 
-0- 

t ’  

dX - =  0 
dot 

which yields: 

where a and 8 a r e  the constants defining the link strength and a r e  de t e r -  

mined by experimental  t es t s  of f iber s t rength vs.  length a s  descr ibed p re -  

viously. 6 i s  the ineffective length defined by a f iber  shea r  s t r e s s  analysis  

and e i s  the base of natural  logarithms. 

The resu l t s  of the preceding sections a r e  used in eq. (13) to compute 

composite strength.  The predicted composite failure s t r e s s  is plotted in 

F igure  6 for  the range of ineffective lengths of one to one hundred f iber  diam- 

e t e r s .  The range one to ten generally corresponds to the e las t ic  predictions 

(set! F igure  3 )  and the range ten to one hundred to  the inelastic predictions.  

Also shown in F igure  6 a r e  the effects of variations in  f iber  charac te r i s t ics .  

Curves  a r e  presented to show the effect of an  increase  in  the dispers ion,  as  

measu red  by a 10% change in 8 ,  and of a decrease  in  the reference strength 

a s  measured  by a 10% change in  a -  ”’. The failure s t r e s s e s  shown neglect 

the effect  of binder extensional s t r e s s e s  and hence a composite fa i lure  s t r e s s  

i s  obtained by multiplying the value fo r  v 

on f ibe r  a r e a  alone) by the actual f iber volume fract ion,  

- 
f -  1. 0 (which is the s t r e s s  based 
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Implications of the Fa i lure  Model 

One of the reasons  f o r  the existence of many tensile fa i lure  models 

is that, fo r  gross  behavior, there  a r e  many s imi la r i t i es  in the p red ic t i a i s  

which a r e  obtained f rom widely diffzring models.  Consider first the influ- 

ence of volume fraction upon strength.  In eq. ( 1 3 )  the ineffective length is  

a function of fiber volume fraction, v This  function is  given in  eq. (8) f '  
which f o r  defined constituents can be written a s :  

and f rom eq. (13) 

where u i s  a reference s t r e s s  level which is a function of f iber  and ma- 

t r i x  proper t ies .  
ref 

This  equation is plotted in Figure 7 (for l3 = 7. 7, which is a typical 

value for  commercial  E-glass  f i laments)  where it is compared with the rule  

of mixtures  value, namely: 

t = 'ref Vf 

The tensi le  strength of the ma t r ix  has  been neglected since it i s  usually of 

little importance in  this sense  except a t  low f ibe r  volume fract ions.  The curve 

of eq. ( 1 5 )  does not go  to unity a t  a f iber volume fract ion of unity because the 

maximum packing density of f ibers  i s  a hexagonal a r r a y  f o r  uniform diam-  

e t e r  f ibers  with v - 0.904.  The proximity of the two curves  indicates the 

hazard of inferring f rom agreement with experimental  data that the analysis  

which generated one o r  the other curve i s  a c o r r e c t  model  of the fai lure  

process .  

f -  

The next problem i s  the question of selecting a reference f iber  

s t rength with which to make comparisons between composite performance 
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and expected composite performance. In treating f ibers  which a r e  charac-  

te r ized  statist ically,  the hazard of using a mean value should be quite ap-  

parent f rom the previous observations of the variation in fiber strength.  

Thus the strength value does not have a meaning unless there  is a length 

value associated with it.  Consider f ibers  character ized by eq. (10) and 

composed of n links of length 6, where L = nb, which links a r e  charac-  

te  r ized by: 

B -1  f (a)  = C L b P 5  P exp (-a bo ) 

The kth moment of such a distribution function i s  defined by: 

k Mk = 1 u f (a)  do 
0 

- 
The mean, CJ, and standard deviation, s, a r e  defined in t e r m s  of this  

moment function a s  follows: 

- 
1 a =  M 

s = [M2-Ml 2 ] 1 / 2  

Substitution of (17)  and (18) into (19) and (20) yields: 

0’ = (a6)-% (1 t 1/13) 

= (ct b ) - l / @ k ( l  t 2 /3 ) - r z (1  t 1/13)] (22) 

Similarly,  for  f ibers  of length, L, eqs .  (11), (18) and (19) yield the mean 

strength of such individual f ibers ,  oL, as :  
- 

( 2 3 )  
L 
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It is now possible to  answer the question: what is the relationship be- 

tween the composite strength (the s ta t is t ical  mode) and the mean strength 

of individual f ibers  of length, L ?  The answer is: 

It i s  of interest  to plot this strength rat io  as  a function of the f iber  coefficient 

of variation which i s  obtained f r o m  eqs.  (19) and ( 2 0 )  a s :  

Note that f o r  the Weibull distribution, this  ra t io  i s  indcpcndent of f iber  gage 

length. Simultaneous solution of eqs .  (24)  and ( 2 5 )  for  selcctcd values of 

L / b i s  achieved by varying 8 .  The resu l t s  a r e  plotted in Figure 8 where com- 

posite strength i s  plotted a s  a function of the fiber coefficient of variation, 

that i s ,  the standard deviation divided by the mean valuc at  that same length. 

Thus it i s  seen that in dealing with composites of length equal to onc! ineffcc- 

t ive length, that is the basic bundle of f iber  links of thc.  model previously dc- 

sc r ibed ,  the mode of the bundle s t rength i s  slightly lower than the mean 

s t rength of individual f ibers  and departs  f r o m  this valucx a s  the. variation i n -  

c r e a s e s .  The other curves  show that a s  the length ratio. incrcast-s ,  as is the 

case  for  reasonable specimens uzhere the f iber  length i s  l a rg r  coinjmred to 

the ineffective length, one would expect f r o m  this  analysis  that composite 

s t rength would be somewhat l a rge r  than the rncan s t rength of f i b r r s  of the 

same  length. And since these numbcrs  a r e  c lose to onc., for  cocfficic-nts o f  

variation a s  large a s  1570, i t  is easy to in te rpre t  thc composite pcrformancc 

as having been equal to some fraction of the f ibcr  perfornitlnc.e. In gencral ,  

the composite strength indicated here  \\.auld not be achicve-d ht.cnusc thc. 

damage to the fibers during the fabrication p rocess  changcss the population 

characterization. Curves of this  typc then have an important use' i n  a s s r s s -  

ing how fa r  the composite deviates f r o m  i t s  potential strcbngth v;11ur becausc  

of additional damage introduced a f t e r  the tin-,(. of the  m r ~ s u r ( ~ n ~ ~ * n t  of the 
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f iber  strength.  To emphasize the point, note that if one t e s t s  f ibers  of a given 

length and then t e s t s  a composite and compares  the two s t rength values,  

these resu l t s  indicate that,  i n  general, the numbers  a r e  expected to be close 

together f o r  f ibe r s  which do not have ex t reme var ia t ions.  However, the 

fact  that  they a r e  c lose together does not indicate that t he re  is any under- 

standing of the mode of fa i lure .  Thus, one may consider  the experimental  

data to  support  the theory that failure is  governed by the rule  of mixtures  

o r  that  fa i lure  is governed by this s ta t is t ical  f r ac tu re  theory.  Both yield 

similar resu l t s  for  this  g r o s s  effect, yet the different models  suggest dif- 

fe ren t  methods of increasing the composite s t rength.  The importance of 

obtaining a c o r r e c t  model  for  the mechanics of f rac ture  l ies  in the potential 

for  achieving improved composites.  

Experimental  P r o g r a m  

The validity of the present  model was investigated by a new experi-  

mental  technique initially described in Ref. 4. This  experimental  p rog ram 

was directed toward making possible the observation of the fai lure  mechan- 

ism during the ac tua l  loading process  of the composite.  The experimental  

model  is shown in F igure  9 and consisted of a single layer  of g lass  f ibe r s  

imbedded in a n  epoxy ma t r ix  and loaded in  tension para l le l  to the f ibers .  In 

the present  extension of the study, f ibers  of a d iameter  which is la rge  com- 

pa red  to commerc ia l  f ibers  were  used. These  were  3-1 / 2  mil E-g lass  f ibers  

furnished through the courtesy of Narmco R & D .  The f iber  spacing w a s  re la -  

tively close and  the thickness of the specimen was only slightly l a r g e r  than 

the d iameter  of the f iber .  The overall  specimen gage section dimensions 

w e r e  a 1 / 2 ”  width, a 1” length and a thickness of about four thousandths of 

a n  inch. The f iber  volume fraction was approximately 50%. The specimen 

was observed photoelastically during the t e s t  p rocess  in a fashion such that 

the unloaded specimen appea r s  black. The ma jo r  contributor to the photo- 

e las t ic  effect i s  the g lass  f ibers  and a s  they a r e  loaded the f ibers  w i l l  

brighten. Thus,  when the f iber  i s  at  high load and appea r s  bright a broken 

f iber  will resul t  in a ze ro  s t r e s s  region which i s  dark.  
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The fibers used in these specimens were tes ted  individually at three  

different gage lengths and the resu l t s  a r e  plotted in Figure 10 in  the f o r m  of 

average  strength a s  a function of gage length. To indicate the effect of the 

ma t r ix  propert ies  upon the composite, two t e s t  s e r i e s  were  conducted utiliz- 

ing epoxies which were very  near ly  identical except that one specimen had 

a flexibil izer added to it. This resu l t s  in a dec rease  of the elast ic  modulus 

and an  increase in the total  s t ra in  to  fa i lure  a s  shown in Figure 11. The 

t e s t  r e su l t s  a r e  presented in Table 1. Typical photographic sequences of 

one specimen f rom each group a r e  presented in F igures  12 and 13. 

At less  than 50% of the ultimate load, individual f iber  f rac tures  a r e  

observed. Since the f rac tured  f iber  in the vicinity of the f rac ture  i s  un- 

s t r e s s e d  the color r e tu rns  to  the original da rk  color.  Thus,  b reaks  appear  

as a short  dark rectangular a r e a  with a thin white line a c r o s s  the center .  

The length of this da rk  a r e a  is the ineffective length of the f iber .  As the load 

inc reases ,  the f ibe r s  f r ac tu re  a t  random locations. Although there  a r e  s t r e s s  

concentrations i n  the vicinity of the breaks ,  the variation in f iber  s t rength 

generally more  than offsets the effect of such concentrations.  Hence, the 

breaks  occur  randomly r a the r  than cumulatively a t  the s i te  of the initial 

break.  

The effect of ma t r ix  proper t ies  on the cha rac t e r  of the resu l t s  i s  

emphasized in F igure  14. F igure  14a i s  a reproduction of the picture a t  99% 
of ult imate load of 3 1 / 2  m i l  E-g lass  f ibe r s  in a n  cpoxy having a modulus of 

6 0.48 x 10 psi .  The f iber  ineffective lengths a r e  on the o r d e r  of 1 0  d iameters  

and distribution of f iber  breaks  is random. F igure  14b shows the s imi la r  

specimen using a ma t r ix  ma te r i a l  of modulus 0 .  28 million psi  again taken 

a t  997’0 of the maximum load. Here it is seen that ( 1 )  the ineffective lengths 

a r e  substantially l a rge r ,  being on the o rde r  of 30 d i ame te r s  and ( 2 )  that the 

number of breaks a r e  sma l l e r  and ( 3 )  the effect  of s t r e s s  conccntrations i s  

l a rge r .  Since the ineffective lengths a r e  l a rge r ,  i t  takes  fewer of them to 

produce a weak c r o s s  section and hence fa i lure  of the cornpositc. Thc role 

of the ma t r ix  in confining the detr imental  effect  of per turbat ions of the s t r e s s  

field which result  f rom a f iber  break  a r e  c lear ly  evident. Thus,  it i s  seen 

that although a ductile mat r ix  i s  desirable  f r o m  the point of view of alleviating 
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the s t r e s s e s  and preventing interface fai lure ,  and a l so  for  having a higher 

f r ac tu re  toughness, a s t rong and stiff ma t r ix  would have a grea te r  effect 

on confining the perturbations to the s t r e s s  field thus producing a beneficial 

effect fo r  the s ta t is t ical  fa i lure  model. Experiments  using constituents which 

t rade  off these various f ac to r s  a r e  sorely lacking, and the proper  evaluation 

of the relative m e r i t s  of various failure models will requi re  more  experi-  

menta l  work. It is hoped that the experiments that have been described he re  

can be  extended to aid in this work. 

Since the tes t  data of Figure 10 yielded a s t ra ight  line and since the 

Weibull distribution of eq. 10  would a l so  produce such a s t ra ight  line, as  is 

apparent  f rom eq. (23) ,  the f iber  tes t  data can be used direct ly  in the ana-  

lyt ical  model to predict  composite strengths.  This has  been done and the 

r e su l t s  a r e  presented in  Figure 15 based on the f iber  d iameter  of 3-1/2 mils 

for  the experimental  f ibers  used. The curve is l inear  on this  logarithmic 

plot where the ineffective length ratios one to  ten a r e  appropriate  to  e las t ic  

m a t r i x  ma te r i a l s  and the range 10 to 100 is the appropriate  range for  the 

inelastic resu l t s .  The two t e s t  points previously descr ibed (average values 

f r o m  Table 1 )  a r e  shown on this plot and it is seen that the two appear  to 

have the t rend  of the analytical  resul t  but the strength levels  a r e  substantially 

below those shown. Several  reasons exis t  for  this ;  one important one being 

the fac t  that the f iber  strength values of Figure 10 cannot be extrapolated to 

very  short  f i be r s  since data (e. g. Ref. 8 )  show that the curve flattens out 

a t  very  short  lengths. Since the ineffective length, for  a prac t ica l  composite,  

is a very  short  f iber  length, one must reconsider  what amounts to an  ex t ra -  

polation of the s t ra ight  line of Figure 10 down into the sho r t  f iber  range. To 

do this  consider some simple fiber populations; for  example,  the rectangular 

distribution shown in Figure 16a. Given th i s  simple rectangular  distribution 

function for the links in a fiber chain the cumulative distribution function is 

readi ly  obtained a s  shown in Figure 16b. The chain represent ing a f iber  con- 

taining n links would have a distribution function of the general  shape shown 

in  F igu re  16c and i t s  associated cumulative distribution function a s  shown 

in F igu re  16d. However, it appears  f rom data, fo r  g l a s s  f ibers  for  example,  

that  the general  charac te r i s t ics  of the distribution function indicates that the 
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bulk of the fibers fa i l  within a finite band at high s t r e s s  level and occasional 

f ibers  fail a t  small  s t r e s s  levels S O  that a n  idealized link distribution func- 

tion would look m o r e  like that shown in Figure 17a. Here the bulk of the 

f ibers  a r e  shown a s  in  the preceeding simple rectangular distribution func- 

tion with a small  portion of the population isolated a t  a lower s t r e s s  level. 

The effect  on the cumulative distribution function fo r  the f iber  lengths is 

t r ivial .  It departs f rom zero  over the lower range as  opposed to  running 

along the axis  to the s t r e s s  o3 but the value p can be quite a small value. 

However, i f  one now looks a t  the effect of this sma l l  additional low s t r e s s  

group on the strength of a chain it is seen that there  exis ts  a distribution 

function which has two peaks, where the maximum value of the two peaks 

a r e  a s  shown, and a l so  the cumulative distribution function i s  r a the r  dras t ic -  

ally modified. The analysis defining these r e su l t s  i s  presented in  Appendix B. 

F o r  p a rb i t ra r i ly  smal l  there  is some large n value which will suf- 

ficiently diminish the right hand peak of F igure  17C with respec t  to  the left  

hand peak s o  that a long enough chain wi l l  soon have i t s  strength dominated 

by the low s t r e s s  level group of the population. F igure  18 shows the number 

of elements n required to make these two peaks equal to one another a s  a 

function of p, the fraction of the population in  the low strength region. The 

number of elements required i s  a function of the rat io  of the width of upper 

rectangular band, 0 

a2 - a l .  Results a r e  shown for three different values of this  ratio.  It can 

be seen that even for  f ract ions of the population in  the low strength region a s  

low a s  1% only severa l  hundred elements a r e  required before  the lower peak 

equals the upper peak. The influence of the distribution of f ibers  between the 

two different regions is shown more  clearly in  Figure 19, in which the a v e r -  

age f iber  strength i s  plotted a s  a function of the f iber  length where the d is -  

tribution function for  the individual elements is a s  shown in  the lower left 

portion. Here the upper band i s  twice the width of the lower band and only 

1% of the link elements a r e  considered to be i n  the lower band. The resu l t  

for  the mean strength curve very closely s imulates  the experimentally ob- 

served bilinear distribution of strength v e r s u s  length. It is considered 

significant that distributions of this f o r m  can reproduce the experimental  

to the width of the lower rectangular band,  4 - O 3 ’  
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data. Evidently the prospects  a r e  encouraging for  using such a distribution 

direct ly  in the fa i lure  model that  has previously been descr ibed.  

The original example for  the computation of composite s t rength was 

based on the use of a single straight l ine,  such as the la t te r  portion of this  

curve of Figure 19. It is c l e a r  that  th i s  can  lead to  a n  overes t imate  of the 

composite strength.  Having demonstrated the ease  with which the experi-  

mental  f iber  s t rength data can be simulated, it now remains  to select  a n  

appropriate  compound distribution function and use it in the previously de- 

r ived s ta t is t ical  analysis.  F o r  example a Weibull distribution can be utilized 

in  the following form: 

B 1 - l  $1 f (o)  = pa16P1a exp (-a 1 6  u ) 

and the associated cumulative distribution function: 

It is seen  that for  p equals e i ther  ze ro  o r  one, the resul t  reduces to 

a s imple Weibull distribution and f o r  any p value this  compound distribution 

can  be used in  the preceding equations i n  exactly the saqe -  fashion a s  the 

s imple one was with only the sacrifice of a lgebraic  simplicity.  

Conclusions Regarding Tensile Fa i lure  

The tensi le  model indicates that  randomly distributed f iber  f r a c t u r e s  

occur  well below the ult imate composite strength.  The s ta t is t ical  s t rength 

character izat ion of the f ibe r s  determines the frequency of these f iber  breaks .  

The s t rength cf the composite is determined by th is  and by the efficiency with 

which the ma t r ix  limits the effect of the perturbation of the local s t r e s s  field 

produced by a f iber  break.  The need for  s ta t i s t ica l  character izat ion of f ibe r s  

and f o r  consideration of mat r ix  deformations is strongly indicated. A new 
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experimental  technique for  the evaluation of the tensile fa i lure  p rocess  has  

been presented and the resu l t s  support  the analytical model. 

The analysis does not include all possible detr imental  effects  and 

hence it i s  perhaps bes t  to  view the resu l t s  as indications of the potential 

f o r  advanced s t ructural  composites.  These potentials a r e  the major  con- 

clusions of the present  study. Simply stated, the conclusion i s  that high 

s t rength f ibers  used in a n  appropriate  ma t r ix  can yield composites having 

tensi le  strengths usually attained only i n  very short  lengths of very  smal l  

d iameter  fi laments.  
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COMPRESSIVE STRENGTH 

The problem considered is the compressive s t rength of a fibrous 

composite formed by the s e t  of parallel  f ibers  imbedded in  an otherwise 

homogeneous matr ix .  

p ress ive  load paral le l  to the f iber  direction, 

(Ref. 9)  that the mode of fa i lure  f o r  such a composite is the smal l  wavelength 

buckling of the f ibers  in a fashion analogous to the buckling of a column on an 

elast ic  foundation. 

i s  indicated in Figure 20. Photoelastic s t r e s s  pat terns  a r e  shown for  th ree  

individual glass  f ibers  imbedded i n  an epoxy ma t r ix  which has  been cured a t  

a temperature  of about 250 F. As is well known, the shrinkage of the epoxy 

f rom i t s  cure  temperature  down to room temperature  resu l t s  in  the frequently 

observed elast ic  instability of the glass fiber.  

and one half, and one half mi l  diameter in three  separa te  blocks of epoxy a r e  

shown. 

has  occurred.  All three blocks consist  of the same epoxy subjected to  the 

same cure  conditions. 

the difference in amplitude and wavelength of buckling. 

epoxy res in  provides a convenient means for applying a compressive s t r a in  to  

this glass  fiber and observing the resultant instability. 

of a column on an elastic foundation indicates that the buckling wavelength of 

a c i rcu lar  column would be directly proportional to the f iber  diameter  ( see  

Ref. 10). 

and hence the foundation modulus, although unknown, can be considered to  be 

the same in a l l  cases .  Thus, i t  would be expected that the buckling wavelength 

would be l inearly dependent upon the fiber diameter .  

measured  experimental  resul ts .  

the f iber  diameter  on logarithmic paper so that a l inear  relationship between 

the two appears  a s  a 45 

F igure  20 a r e  plotted along with a best  fit 4 5 O  line. 

this analytical curve and the t e s t  data indicates a t  l ea s t  qualitatively that 

t he re  i s  some justification for considering the elastic instability mode as the 

fai lure  mode for the glass  f ibers .  

The composite is considered to  be subjected to com- 

It has  been suggested by Dow 

One of the motivations for such a composite failure model 

0 

E-glass  f ibers  of five, th ree  

I t  i s  c lear  f rom the repeated s t r e s s  pat tern that a buckling failure 

The only apparent difference between specimens is 

The shrinkage of the 

The analytical model 

The three f ibers  shown here a r e  a l l  in identical epoxy ma t r i ces  

Figure 21 shows the 

Here the buckle wavelength i s  plotted against  

0 line on this graph. The three  tes t  points shown in 

The agreement  between 
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The problem of quantitatively evaluating this instability failure for 

multiple f ibers  imbedded in  the homogeneous ma t r ix  is not a s  straight- 

forward. 

in  Figure 22. A s e r i e s  of paral le l  f i be r s  a r e  t rea ted  a s  a two dimensional 

problem, so that the model consis ts  of plates of thickness h separated by a 

ma t r ix  of dimension 2c. Each fiber is subjected to  a compressive load, P, 

the fiber length is  given by the dimension, L. Now, two possibil i t ies a r e  

considered for the failure mode here .  

opposite directions in adjacent f ibers  a s  shown on the left portion of Figure 

22 and the so-called extension mode occurs .  This mode receives  i t s  name 

f r o m  the fact that the major  deformation of the ma t r ix  ma te r i a l  is  a n  extension 

in the direction perpendicular to the f ibers .  

f ibers  a r e  stiff relative to the mat r ix  and that shear  deformations in  the fiber 

can be neglected relative to those in the mat r ix .  The second possibility is 

shown on the right portion of the figure where adjacent f ibers  buckle in the 

same wavelength and in phase with one another,  so that the deformation of 

the mat r ix  mater ia l  between adjacent f ibers  is pr imar i ly  a shear  deformation. 

Hence, the shear  mode label for  this potential mode. 

evaluation of the buckling s t r e s s  for  these modes has  been utilized, where the 

procedure i s  to  consider the composite s t r e s s e d  to the buckling load and then 

to compare the s t ra in  energy in this compressed  but s t ra ight  deformation 

pattern to a deformation pattern following an a s sumed  buckling shape under 

the same load. 

consisting of the s t ra in  energy change in the f iber ,  A V , and the s t r a in  

energy change in  the binder,  AV,, can be compared to the change in  the 

potential energy associated with the shortening of the distance between the 

applied loads a t  the end of the f ibers ,  AT. The condition for instability is 

given by equating the s t ra in  energy change to the work done by the external  

loads during buckling. 

The analytical model considered in  the present  analysis is shown 

F i r s t ,  the f ibers  may buckle in  

The model considers  that  the 

The energy method for  

Thus, a change in the s t ra in  energy of the composite 

f 

Details of the analysis a r e  presented in Appendix C.  

The resul ts  for the compressive strength,  CJ fo r  the extension mode C’ 
is given by: 
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The resu l t  for the shear  mode i s  given by: 

Gb c r =  
C 1 - Vf 

These resu l t s  a r e  plotted in Figure 2 3  for  E -g la s s  f ibers  imbedded in an 

epoxy matr ix .  

function of the f iber  volume fraction, 

u re  modes considered. It is seen that fo r  the low f iber  volume fract ions the 

extension mode i s  the lower s t r e s s ,  while for  high volume fract ions of f ibers  

the shea r  mode predominates.  The compressive strength of reasonable g lass  

reinforced plastic containing f iber  volume fractions on the o rde r  of 0. 6 to 0 . 7  

i s  seen  to be on the o rde r  of 450 to 600 ksi .  

appear to have been measured  for any rea l i s t ic  specimens.  

achievement of a strength of half a million psi  in a composite of this type 

would require  an  average shortening of g rea t e r  than 570. 
mate r i a l s  used,  such a shortening would resu l t  in  a decrease  in the effective 

shea r  st iffness of the binder mater ia l  because the proportional limit of the 

ma t r ix  would be exceeded. 

to consider inelastic deformation of the ma t r ix  mater ia l .  

approximation to this has  been provided by replacing the binder modulus in  

the formulas previously shown by a m d u l u s  which var ies  l inear ly  for  the 

epoxy f rom i t s  e las t ic  value a t  1% s t r a in  to a ze ro  value a t  570 s t ra in .  The 

resu l t  of this assumption i s  the curve labeled inelastic in Figure 2 3 .  Here  it 

is seen  that for very  high fiber volume fract ions the strength i s  bounded and, 

although higher than any resu l t s  obtained to date,  they a r e  not unreasonably 

high. The r e su l t s  of this study a re  presented in a somewhat different fo rm 

in Figure 2 4  where the average compressive s t r a in  a t  fa i lure  is plotted as a 

function of the fiber volume fraction fo r  composites having two different ra t ios  

oi f iber  Young's r-nodulus to binder shear  r-odulus.  Curves for  the two fai lure  

modes ,  that i s  extension and shear ,  a r e  presented. 

composite i s  obtained simply from these curves  by multiplying the shortening 

by the product of f iber volume fraction and f iber  Young's modulus. 

curves  again indicate that the shear  instability mode is predominant over the 

The compressive strength of the composite is plotted as a 

The two curves  r ep resen t  the two fail- "f * 

Values of this magnitude do not 

However, the 

F o r  the epoxy 

It does appear necessary  to modify the analysis  

A first simple 

The s t rength of the 

These 
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major  range of in te res t  for  these rat ios  of f iber  to binder moduli. 

indicated is the fact  that  a substantial  difference in the resu l t  is achieved for  

a change in the rat io  of fiber to binder moduli. Thus,  the factor of 2 utilized 

in the example here  resu l t s  in  a lmost  a factor  of 2 on the resu l t s  for  the shear  

mode. Thus,  changes in the effective value of the shear  s t i f fness  of the binder 

when s t r e s s e d  beyond the elast ic  l imit  of the ma te r i a l  can have a substantial  

effect on the predicted value of the composite. 

Also 

The resul ts  presented so  f a r  a r e  based on s t ra in  energy computations 

which have involved some assumptions regarding the displacements , and hence, 

i t  is no longer valid to t r ea t  the s t r e s s  obtained a s  an upper bound of the 

buckling s t r e s s .  

in the s t r a in  energy a more  p rec i se  model m u s t  be considered. 

by treating the boundary value problem defined by considering an elast ic  

domain subjected to  sinusoidal normal  displacements on the boundary. 

s t ra in  energy in  the binder ma te r i a l  is evaluated by considering this s t r i p  a s  

a two-dimensional elastic domain. The equilibrium equation expressed  in 

t e r m s  of displacements can be used to obtain a solution to this problem by 

following an  approach used by Timoshenko (Ref. 10)  for the related t ract ion 

boundary value problem. 

to be a r b i t r a r y  functions of y multiplied by trigonometic functions of the 

longitudinal direction x. 

equilibrium equations can be shown to yield an ordinary differential  equation 

for the function of y.  

sidering the boundary conditions on the displacements .  

energy can be found and this s t r a in  energy can be used in the expression shown 

previously to obtain a t rue  bound on the compress ive  c r i t i ca l  buckling s t r e s s .  

This can be done under the assumption that the fiber i s  sufficiently 

rigid s o  that shear deformations of the fiber can be neglected. 

possible to relax even this constraint  and consider two adjacent e las t ic  

domains;  one representing the binder and one represent ing the fiber and to 

have boundary conditions in the fo rm of continuity of displacements and 

normal  t ract ions a c r o s s  the sur face  ra ther  than i n  the fo rm of prescr ibed  

sinusoidal deformations. 

In  o rde r  to investigate the nature  of the approximation made 

This i s  done 

The 

That is the displacements  CC, and p can be assumed 
Y 

Substitution of these displacements into t h e  

The constants in this solution a r e  evaluated by con- 

F r o m  this the s t ra in  

It  i s  a l so  

This approach requi res  fur ther  study. 
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Another a s ses smen t  of the results of the present  analysis  with 

exper iment  can be obtained by utilizing existing resu l t s  (Reference 11) for 

hollow g lass  f iber  composites.  

a s e t  of shor t  compression columns fabricated f rom hollow g l a s s  f ibers  

imbedded in an epoxy mat r ix  and tested in compression a r e  plotted in the 

fo rm of the ratio of the strength to density ra t io  for a hollow g lass  f iber  

composite normalized with respect  to a composite containing solid E-g lass  

f ibers  with the same  binder volume fraction. Each  experimental  point h e r e  

i s  for  a composite containing a 3070 binder on a volume basis  and each point 

represents  the average of a t  l eas t  5 t e s t s  of nominally identical specimens.  

The fiber radius ra t io ,  that i s  the ratio of the inner to the outer rad i i  of the 

hollow glass  f ibers ,  i s  the independent var iable .  

the s t r e s s  to density curve would increase monotonically with the f iber  radius  

ra t io  over the range of 01 < 0. 9.  

to have the analytical  resul t  a s  an upper bound. 

These resu l t s  a r e  shown in Figure 25.  Here  

The analysis indicates that 

I t  i,s seen that the experimental  data appear  

Conclusions Regarding Compressive Strengths 

I t  appears  that the compressive s t rength of a fibrous composite loaded 

in a direction paral le l  to the f ibers  is governed by a n  instability mode analogous 

to the buckling of a column on an elastic foundation. An analysis  to a s s e s s  the 

quantitiative effect of the influence of constituent proper t ies  upon this buckling 

s t r e s s  has  been presented. 

The compression model indicates that the ma t r ix  shear  st iffness is 

the ma te r i a l  property which has the most  significant effect on composite 

compressive strength.  

by experimental  resu l t s  for the compressive strength of hollow g lass  f iber  

composites.  

The choice of the fai lure  mode is supported qualitatively 

€t appears  that the use of matr ix  i ixiterials having shear  moduli which 

a r e  moderate  ra ther  than small  with respec t  to the fiber Young's modulus can 

yield composi tes ,  of high modulus f ibers ,  which have extremely high 

compress ive  strength.  

high s t r a ins  associated with the very high composite compressive s t rengths .  

Of course the binder must  have these values a t  the 
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APPENDIX A 

EFFECTIVE FIBER LENGTH 

The definition of ineffective length, 6 , involves the determination of 

the shea r  s t r e s s  distribution along the f iber -mat r ix  interface.  

this problem has been presented for  idealized fiber shapes without the effect 

of surrounding f ibe r s  ( ref .  12). 

ref .  13 i s  presented herein.  

of a fiber surrounded by a ma t r ix  which in turn i s  imbedded within a composite 

mater ia l .  

under consideration. 

lag type analysis is utilized to estimate the s t r e s s e s .  

An analysis  of 

An approximate solution s imi l a r  to that of 

The model used is shown in fig. 2 and consis ts  

The la t te r  has  the average o r  effective proper t ies  of the composite 

This configuration is subject to axial  s t r e s s  and a shea r  

Load i s  applied para l le l  t o  the f iber  direction, The fiber is a s sumed  

to c a r r y  only extension and the matr ix  to t r ansmi t  only shea r  s t r e s s e s .  

s t r e s s  i s  t ransmit ted axially f r o m  the fiber end to the average  mater ia l .  

Shear  s t r e s s e s  in  the average mater ia l  a r e  considered to decay in  a negligible 

distance f rom the inclusion interface.  

No  

F o r  equilibrium of a f iber  element in the axial  direction: 

=f  d o f  
T t -  - = o  2 dz 

where  

7 = shea r  s t r e s s  in matr ix  ma te r i a l  

Of = axial  s t r e s s  in fiber 

For  equilibrium of the composite in the axial  direction: 
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where 

= axial  s t r e s s  in average mater ia l  
'a 
(J = applied axial  s t r e s s  
- 

The displacements in the f iber ,  uf,  and in the average  mater ia l ,  u a '  
define the binder shear  s t ra in ,  6 ,  a s  follows: 

ua - uf = ( rb  - r f )  Y (A-3) 

Differentiating eq. (A-3)  twice and using the s t r e s s - s t r a i n  relations 

yields : 

2 'b - r f  d T 
2 Gb dz 

a 1 duf - 
do 1 

E dz 
- - - - - -  

dz Ef a 

where 

E = effective Young's modulus of the composite a 

Ef  
Gb = shear  modulus of the binder 

= Young's modulus of the fiber 

Differentiating eq. (A-2)  and substituting the resu l t  and eq. (A-1 )  into 

eq. (A-4) yields: 

(A-5)  
2 2 d 7  

7 dz 
- q r =  0 

where 

The solution to eq. (A-5) i s  of the form 

7 = A sinh q z  t B cosh rl z 
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The boundary conditions a r e :  

T (0) = 0 

O f ( & )  = 0 

... B = 0 

2 
a G e r  

2 
b A =  

V E a  (rb - I f )  (ra rb2) ‘Osh 77 .e 

and 

G 0 raZ sinh Q z b T =  
V Ea (rb - ‘f) ( ra2 - ‘b2) ‘Osh 7‘ 

(A-6) 

From eqs.  (A-11) and (A-16): 

- 2 
U r  

2 - 1) (A-7) cosh r l z  
cosh rl 4 

a Ef = -  
f pa (ra - = b 2, i- Ef rf2] 

b Consider  r > > r a 

. 2  ‘b . .  q M 
rfEf ( r b - r f )  

and f rom eq. (A-18): 

The maximum axial  s t r e s s  is 

(A-8) 

(A-9) 

(A-10) 
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U s i n g  the r e su l t s  of this elast ic  analysis ,  the s t r e s s  ra t io ,  Cp, is 

evaluated f rom the ra t io  of the s t r e s s  at a distance 6 f rom the end of a given 

f iber  to the s t r e s s  at the midpoint of a ve ry  long f iber .  The s t r e s s  at a point 

at distance 6 f rom a f iber  end is: 

- 

- l l  

Cosh q(4 - 6 ) 
Uf ( 4  - 6 )  = - - 

OEEf a [ cosh V 4  
(A- 11) 

The fiber efficiency, c p ,  at this point is therefore  defined by: 

for  la rge  .e: 

and 

(A- 1 3 )  

(A-14) 

6 [I (: nr 1 ' 1  

(A-15) 

F o r  the purposes of this analysis  a value of rc = 

evaluated f o r  this s t r e s s  ra t io  value 

of the f iber  in which the average  axial  s t r e s s  is g r e a t e r  than 90% of the s t r e s s  

which would exist for infinite f ibers .  Fig.  3 shows the variation of ineffective 

length with constituent moduli for  various f iber  concentrations.  

0 .  9 is considered,  and 6 is 

Thus,  effective length is  that portion 
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APPENDIX B 

STATISTICAL MODELS FOR FIBER STRENGTH 

A fiber is considered. to  consist of a chain of links. Any consistent 

combination of link length and link strength distribution which combine to 

reproduce the fiber strength data a re  acceptable.  

in Appendix A, the s ta t is t ical  distribution of link s t rength i s  obtained f rom 

experimental  f iber strength distributions. 

the distribution function f ( 0 )  and the associated cumulative distribution F (0 ) 

where: 

With link length defined a s  

Consider links charac te r ized  by 

a 
F ( a )  = J f ((5) do 

0 

For  n such links forming a chain which fa i l s  when the weakest link f a i l s  the 

distribution function g (a )  for the chain i s  defined by: 

F r o m  this ,  the cumulative distribution function, G (a ) for the f ibers  is 

obtained: 

The solution of the inverse problem is des i red .  That i s ,  given the 

fiber data,  g ((5 ) and G (0 ), define the link data for a link length, 6 . 
eq. (B-4): 

F r o m  

F (a) = 1 - [l - G (B -5) 

and thus f rom (B-1) and (B-5):  

(B-6j  
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As an  example, consider f ibers  charac te r ized  by a s t rength 

distribution of the Weibull (ref. 7)  type: 

This form has  been shown to charac te r ize  the experimental  length L, to 

s t rength,  0 ,  relationship of f ibers .  

yields : 

Using equation (B-7) in  (B-3) and (B-6) 

where: 

L = n6 

The constants and /3 can be evaluated by using experimental  s t rength-  
- 

length data. 

length which, i s  defined by: 

To do this ,  consider the mean fiber s t rength,  Of f o r  a given 

m 

Substituting eq.  (B-7) into (B-9) and integrating yields:  

(B- 10)  

A logarithmic plot of the available data for 5 as  a function of L will f 
define the constants. Such a plot is presented i n  fig. 10. The l inearity of 

the data support the choice of the distribution function given by eq. (B-7).  

The constant p i s  an inverse  measu re  of the dispers ion of mater ia l  

strength.  

while a value of twenty is appropriate  for a ductile metal  ( r e f .  5 ) .  
constant (Y, a s  seen f r o m  eq. (20),  defines a cha rac t e r i s t i c  s t r e s s  level,  

Values of p between two and four correspond to brit t le c e r a m i c s ,  

The 

(Y -118 
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Most experimental  data for  glass  f ibe r s  (e. g. ref. 8) indicate that a 

plot of the type shown in f ig .  10 should be bi- l inear  with the smal le r  slope in 

the very  shor t  gage-length region. 

simple model designed to i l lustrate  a possible cause for this bi-l inear 

behavior. 

in a composite can be t rea ted  by the method of ref .  4. 

The following work is the analysis of a 

The model is presented to indicate how the behavior of such f ibers  

Consider a rectangular distribution a s  shown in fig. 16a. For  this :  

1 
b - a  f ( a )  = 

f ( 0 )  = 0 

F r o m  (B- 1) and (B-11): 

a -  a 
b - a  F (a)  = 

F (a)  = 0 

F ( a )  = 1 

a 5 0  5 b 

CT < a  

a > b  

Substituting (B-11) and (B-12) into eq. (B-2) yields:  

n- 1 

The mode of g (a ) = (J ::: = a 

a < a  

a > b  

a 5 0 s  b 

(B- 11) 

(B-12) 

(B-13) 

Next consider the doubie rectangular distribution shcwr, ir, fig. l ? a ,  

Here:  
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1 
= o  u < u  

-2  - u2 - a 1 
a s a s u  1 2 

u < u < a  2 3 = o  

- 1 - P  - 
u4 - O 3  

u s u < u 4  3 

= o  a > u4 

Substituting eqs. (B- 14) into eq. (B-  1)  yields: 

I 
1 

(B-14) 
t 

(B-15) 1 
J F (a) = 1 a > u4 

For  the chain, substitution of eqs.  (B-14) and (B-15) into eq. (B-2) yields: 
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This yields the distribution function shown in  F igure  17c. The values of 

the two peaks a re :  

(B-17) 

(B-18) 

It is seen  that the mode changes f r o m  D3 to 0 a t  some value of n. 

at which they a r e  equal is plotted in fig.  18 and is obtained by setting: 

The value 1 

g (a1) = g ( 0 3 )  (B-19) 

F r o m  eqs.  (B-7) to (B-9): 

n =  lcg ( 1 - p) 
(B-20) 

The average s t rength for a given length f iber  composed of n links taken 

f r o m  the population character ized by eqs.  (B-4) is found as follows: 

(B-21) 
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which yields 

n- 1 a -  a 
da  t az - a (B-22) 

Eq. (B-23) i s  plotted in f ig .  19  for selected values of p and az. I t  i s  

seen  that the bi-l inear distribution i s  very well simulated.  
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APPENDIX C 

COMPRESSIVE STRENGTH OF FIBROUS COMPOSITES 

The compress ive  strength of a f ibrous composite is evaluated by 

treating the elast ic  stability of a two-dimensional a r r a y  of l aye r s  of f iber  

and ma t r ix  mater ia l .  

compared to the binder and hence shear  deformations of the fiber a r e  

neglected. 

change in s t r a in  energy for  the fiber,  AV,, and the binder,  A V b ,  as  the 

composite changes f r o m  a compressed but unbuckled configuration to the 

buckled s ta te  will be equated to the work, A T ,  done by the f iber  loads.  

The f ibers  a r e  considered to be relatively stiff as 

Instability will be evaluated by utilizing the energy method. The 

Thus,  

A V f t  A V b  = AT 

F o r  the two dimensional ca se  the load p e r  running inch on each fiber can be 

expressed  as the product of f iber  s t r e s s ,  (3 and fiber thickness ,  h: f ’  

P = a h  (C-2 )  
f 

The procedure  then is to a s sume  various buckle pat terns  and find thc lowest 

buckling load. If all t e r m s  in the s t ra in  energy a r e  apprc)priatc.ly considered 

each of these buckling s t r e s s e s  will provide an upper bound; and the lowest of 

these values may  be taken a s  a buckling load. 

he re in  a r e  the two c a s e s  shown in Figure 22  where the buckling pat tern in a l l  

f ibers  is of the s a m e  wavelength wi th  adjacent f ibers  e i ther  in o r  out of plidse 

with one another .  

s t r e s s  l a r g e r  than the sma l l e r  load for thc two individual modes.  

will  be a s sumed  to buckle into the sinusoidal pattern cxprcsscd b y  the following 

s e r i e s  in v, the displacement in  thc y direction: 

The cases  to be Considered 

The mixture  of the two can be expected to have d buckling 

Each f iber  

( C - 3 )  
nnx  L a sin- 

n L v =  n 
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F o r  the extension mode,  the t r anve r se  s t ra in  is a s sumed  to be 

independent of the y direction so  that: 

and 

V 
(3 = E b c  

Y 

The changes in  s t ra in  energy associated with the axial and shea r  

s t r e s s e s  a r e  considered negligible with respec t  to  those due to  the t ransve  

s t r e s s e s .  Thus 

1 AVb = 1 Oy € y..dv 
V 

Substituting eqs. (C-3)  to ( C - 5 )  into (C-6) yields: 

- EbL 2 
A V ,  - - C an 

2c n 

F r o m  ref.  10 (in the present  nomenclature) 

4 3 

- f8 L3 n 

4 2  n Efh 
C n  a - 

n 

and 

2 2  2 
AT = - C n a Pl-l 

4L n n 

Substituting eqs.  (C-7) to (C-9)  into (C-1): 

4 
4 24L Eb 2 

3 ~n a 2 t  3 an n n Ef  11 

c n 2 a  
n 

n4 ch  Ef n 
2 

11 P =  
2 

n 
12 L2 

J 

V 
1 -  

Y C 

and 

V 
(3 = E b c  

Y 

(C - 4) 

The changes in  s t ra in  energy associated with the axial and shea r  

s t r e s s e s  a r e  considered negligible with respec t  to  those due to  the t ransve  

s t r e s s e s .  Thus 

5) 

r se  

1 AVb = 1 Oy y..dv 
V 

Substituting eqs. (C-3)  to ( C - 5 )  into (C-6) yields: 

- EbL 2 
A V ,  - - C an 

2c n 

F r o m  ref.  10 (in the present  nomenclature) 

4 3 
4 2  n Efh 

C n  a 
n 

- 
n "f - f8 L3 

and 

2 2  2 
AT = - C n a Pl-l 

4L n n 

Substituting eqs.  (C-7) to (C-9)  into (C-1): 

P =  

2 3 n Ef  11 

12 LL 

4 24L Eb 

n4 ch  Ef n 

2 
E n 4 a 2  t 3 an n 
11 

- 

2 c n 2 a  n n 
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Expression (C-10) is a minimum for one value of n, say m, hence 

4 2 4 L  Eb 

12 L2 n4 ch3 Ef 

2 2 
TT Ef h 

- [m2 t (C-11) f -  (5 

cr 

Since m is la rge  i t  may be treated a s  a continuous variable and eq. 

(C-11) can be minimized by setting 

(C-12) c r  
2 

a Of 
- z  0 
am 

This yields 

11.2 E E  
(5 f = 2 [ 3 ( 1 - v f ) ]  Vf b f 

c r  

where 

- h 
Vf - h t 2c 

and f o r  thc composite s t r e s s ,  (5 
C’ 

C 
a = Vf Of 

c r  

f :. a = 2v 
C 

~ , , e  cr i t ical  s t ra in ,  can be eva  c r ’  
I- iated f rom eq. (C-13). Thus,  

112 i / 2  

c r  = 2 [ j ( 1 y i v f ) ]  (?) 

(C-13) 

(C-14) 

(C-15) 

(C-16) 
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The shear instability mode i s  evaluated in a s imi la r  fashion. 

the displacements of all f ibers  a r e  assumed to  be of the same  amplitude and 

in  phase with one another. 

of only the longitudinal coordinate, 

Here  

The shear  s t r a ins  a r e  assumed to  be a function 

In the binder: 

auX 
a u  

= Y + -  
yXY a x  dY 

(C-17) 

Since the t ransverse  displacement i s  independent of the t r ansve r se  coordinate, 

Y: 

Since the shear  s t ra in  i s  independent of y: 

Since the f iber  shear  deformation is negligible: 

u (c) = dx X 

f 

Substituting (C-19) into (C-18): 

Substituting (C-21) and (C-18) into (C-17): 

= (1 t&) 2 I 
f 

yxY 

(C-18) 

(C -20 )  

(C-21) 

( C - 2 2 )  

J 
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and 

I 

' = Gb Yxy (C -23) 
XY 

The changes in  s t r a in  energy assoc ia ted  with the extensional s t r e s s e s  

a r e  considered negligible f o r  this case.  Thus: 

dV 1 
A V b  = z  s V %y yxy (C -24) 

Substituting eqs.  (C-3), (C-22) and (C-23) into (C-24) yields: 

Using eq. (C-25) in place of eq. ( C - 7 )  in eq. (C-1) and proceeding a s  

for  the extension mode, 

2 
T l  Ef 

t 1 2  (?)2 
- Gb 

uf c r  - Vf (1 - Vf) ( C - 2 6 )  

Since L / m  i s  the buckle wavelength, the second t e r m  in ey. ( C - 2 6 )  i s  

small for  wavelengths l a rge  compared with the fiber d iameter ,  and thc buckling 

s t r e s s  i s  given approximately by: 

- Gb 
f -  Vf (1  - V f T  

U 
c r  

and 

'cr  - - Vf ( 1  - Vf ) (2) 

( C - 2 7 )  

(C-28) 

(C-29) 

The lower of the values given by eqs.  ( c - 1 5 )  and (C-28) i s  the best  

es t imate  fo r  the compressive strength. 
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Specimen 
Number 

B1 
B2 
B3 
B4 
B5 

c 1  
c 2  
c 3  
c 4  
c5 
C6 
c 7  

Table 1 
Thin F ibrous  Composite Tensile Tests 

Maximum 
Number of 

Breaks 

37 
31 
34 
13  

2 4 ( 3 6)::: 

21 
28 

19 (37):; 
33 

22 
20 

- -  

Maximum 
Load 

210 
222 
22 1 
207 
197 

195 
181 
184 
196 
200 
206 
203 

Number 
of Fibers 

125 
130 
130 
131 
129 

125 
124 
126 
126 

128 
122 

Fiber Area  
(in') 

1 . 2 7 2 ~ 1  0'3 
1 .  323 
1. 323 
1.333 
1. 313 

2verage stress 
jta nda r d  deviation 

1 . 2 7 2 ~ 1 0 - ~  
1. 262 
1.283 
1.283 

1. 303 
1.242 

Average s t r e s s  
3tanda r d  deviation 

::: Number in  parentheses observed aLLer  maximum loac 

Maximum 
?iber Stress 

(ksi)  

165. 1 
167.8 
167.0 
155. 3 
150.0 

161.0 
7. 1 

153. 3 
143.4 
143.4 
152. 8 

158. 1 
163.4 

152.4 
7. 1 
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F i g u r e  1. Fibe r  Reinforced Composite - Tensi le  Fa i lu re  Model, 



2L  

- a  
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Figure  9. Experimental  Tensile Fa i lu re  Specimen. 
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F i g u r e  12. F a i l u r e  Sequence of Specimen Having E = 0 . 4 8  
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F i g u r e  12 (Continued) 



F i g u r e  12 (Concluded) 



Figure  13. Fa i lu re  Sequence of Specimen Having E = 0. 28  b 



Figure  13 (Continued) 



Figure  13 (Concluded) 



6 a. Matr ix  Modulus = 0. 48 x 10 ps i  

6 b. Matrix Modulus = 0. 28 x 10 ps i  

F igu re  14. Typical View of Tens i le  F a i l u r e  Specimen of 99% of Ultimate 
Strength. F i b e r s  a r e  0. 0035"  Diameter  E-glass .  
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Figure  16. Rectangular Strength Distribution Function for  the Links of a Chain. 
a. Link Distribution Function 
b. Link Cumulative Distribution Function 
c .  Chain o r  F ibe r  Distribution Function 
d. Chain o r  F i b e r  Cumulative Distribution Function. 
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d. Chain o r  F ibe r  Cumulative Distribution Function. 
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Figure  23. Compress ive  Strength of Glass Reinforced Epoxy Composites.  
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